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Analysis of particulate composite behaviour based
on non-linear elasticity and modulus degradation
theory
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CERSIM, Department of Chemical Engineering, Laval University Quebec, Quebec,
Canada G1K 7P4

A micromechanical model for the analysis of particulate mechanical behaviour is presented.

Non-linear effects were introduced in the model by a non-linear elastic description of the

matrix and through a modulus degradation routine. The first part of the study used the

experimental data from a range of glass bead/HTPB composites to back-calculate model

parameters. The results showed that the model gave a good representation of the processes

believed to control mechanical behaviour. These processes include partial particle

debonding and progressive debonding from the largest to smallest particles throughout the

strain history. The second part of the study examined the sensitivity of the model results to

small changes in the adjustable input parameters. The residual bond in a debonded particle

was found to have a dominating effect on the calculated results. Based on the sensitivity

results, ‘‘best guess’’ interaction and debonding parameters were selected to examine the

predictive capability of the model. In most cases, the predicted composite stresses were

within 10% of the experimental data. Dilatation was usually over-predicted. The results

showed that the model was capable of predicting the mechanical behaviour as long as

suitable values for critical stress and adhesion energy were available.
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1. Introduction
The prediction of solid-propellant mechanical behav-
iour has attracted the attention of many researchers
over the years [1—11]. During that time, much of
the effort was concentrated on the development of
phenomenological models that treated propellant as
a homogeneous material. Other researchers took
a different approach and treated propellant as a par-
ticulate composite [12—17]. The micromechanical
analyses carried out by these researchers provided
insight to the physical processes that controlled par-
ticulate composite or propellant behaviour.

It was recognized early on that volume change was
closely linked to the non-linear behaviour which
a particulate composite exhibited as it was loaded.
Smith [18] and Farris [19], hypothesized that partic-
ulate composites exhibited three distinct regions in
their stress—strain behaviour. The initial region was
controlled primarily by the initial inclusion concentra-
tion and the matrix properties. A transition region
delimited the beginning and completion of inclusion
debonding. Application of strain in the last region was
believed only to stretch the binder and enlarge existing
vacuoles. A vacuole was defined as a spheroidal air
pocket which entrapped a debonded inclusion.

A different hypothesis on inclusion debonding
was advanced by Vratsanos—Anderson and Farris
[20, 21]. Here the authors assumed that inclusion
debonding was continuous throughout the strain his-
tory. Constituents were assumed to be linear elastic.
Their micromechanical model parameterized several
experimentally observed phenomena such as the rela-
tionships between reinforcement and particle size
[22—25], reinforcement and adhesion [26—29] and
inclusion concentration and modulus [30, 31] in
a computationally tractable manner. In the range of
analysis techniques covering semi-empirical formula-
tions [32, 33], variational formulations [34—36] and
approximate methods [37—40], their model fell in the
approximate category because debonding at a micro-
scopic level was quantified by modulus prediction
routines that calculated average composite properties.

An evaluation of the combined concentration de-
crease/void addition model by Vratsanos—Anderson
and Farris [20, 21] was made by Wong and Ait-Kadi
[41] using a glass bead/polyethylene composite. The
model decreased the inclusion concentration because
inclusions were debonded, and replaced them by
equivalent-sized voids. A void was defined as a spheri-
cal air pocket with isotropic properties. Following
Vratsanos—Anderson and Farris [20, 21], the linear
5020
elastic constituent assumption was retained. It was
concluded that the model could predict the mechan-
ical behaviour of highly loaded composites if a repre-
sentative adhesion energy was available and if matrix
non-linearity was accounted for.

The model used previously [41] was improved [42]
by implementing a modulus prediction routine based
on the Mori—Tanaka (M—T) method [43] and the
work of Ju and Chen [44]. The addition of Ju and
Chen’s modulus correction matrix to the M—T
method accounted for additional reinforcing effects
due to particle interaction. The improved M—T rou-
tine allowed debonded inclusions to be modelled as
vacuoles by attributing orthotropic elastic constants
to them.

The merits of the improved M—T routine were
evaluated using literature data. Results showed that at
high inclusion volume fractions, correct modulus pre-
dictions could only be made by accounting for particle
interaction effects. Comparison of the new micro-
mechanical model based on the improved M—T
method with experimental data showed that model-
ling debonded particles by vacuoles instead of voids
gave more representative results. The performance of
the new model was limited, like the original model, by
the assumed linear elastic matrix.

In this paper, the implementation of a routine in the
M—T based micromechanical model to account for
a non-linear elastic matrix is described. The validity of
the assumptions on which the model is based is then
explored. This shows that the assumption of continu-
ous inclusion debonding throughout the strain history
is justifiable. A comparison of calculated and experi-
mentally measured parameters that are believed to
control composite behaviour is made using the results
from a glass bead/polybutadiene composite system.
Finally, a sensitivity analysis shows that the micro-
mechanical model can produce accurate results, as long
as representative adhesive characteristics are available.

2. Non-linear elastic micromechanical
model

This section will outline the equations that define the
non-linear elastic micromechanical model. The devel-
opment will begin with a statement of the governing
energy equation and then move to a description of
improved M—T modulus prediction routine. The im-
plementation of the non-linear matrix properties will
then be discussed.

2.1. Governing energy equation
For any deformable material, the state of stress and
strain in a structure can be calculated for a system of
loads or displacements using the first law of thermo-
dynamics. In the case of particulate composites, ex-
ternal work is not only stored as internal strain energy
but is dissipated through the process of particle de-
bonding. It was shown [20, 41], that this statement
could be expressed as
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where G
#
is the adhesion energy between particle and

matrix, dA is the variation or creation of surface area
through debonding, r

ij
is the composite stress, e

ij
is

the composite strain and »
0

is the specimen volume.
By using the boundary conditions for a uniaxial bar

under tension (1 1-direction) and ambient pressure, the
constitutive equation for an orthotropic material can
be shown to be [42]
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where r
11

is the true stress in the loading direction
and e

#3
the uniaxial critical strain. Critical strain is

defined to be the point where the internal strain en-
ergy in the composite and the energy dissipated
through particle debonding equals the work put into
the composite. In this article, all stress measures are in
terms of true stress, while strains are defined in terms
of engineering strain. This distinction is particularly
important when comparisons are made between
model results and experimental data in Section 4.1. It
can be seen from Equation 2 that the average com-
posite tensile modulus, E

#
, is defined by
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By differentiating r
11

with respect to the bonded
particle concentration, c

i
, and substituting it and

Equation 2 into Equation 1 gives
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This equation assumes that the representative volume
element (RVE) is larger than the largest particle, so
that average stress, strain and moduli can be used.
Equation 4 can also be summarized by

de
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" de
.0$

(5)

where de
!3%!

is the energy dissipated through surface
creation and is equal to the left-hand side of Equa-
tion 4 and de

.0$
is the net internal strain energy due to

modulus degradation and is equal to the right-hand
side of Equation 4.

2.2. Relationship between surface area and
inclusion concentration

The relationship between increase in surface area due
to a decrease in bonded particle concentration can be
shown to be [45]
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i

where r is the particle radius. The factor 2 in Equa-
tion 6 accounts for the fact that when a particle de-
bonds, two new surfaces are created. The sin h term
has been included to leave open the possibility that
a particle may partially debond h° from the equator
up to the pole. When h"0°, dA/dc

i
reaches a max-

imum of !6»
0
/r.

The types of particles used for this study were char-
acterized with a log normal size distribution [41]
defined by

log r " log rN#n (7)

where r is the particle radius, rN is the mean particle
radius and n is the log standard deviation.

2.3. Elastic properties of a three-phase
composite

Equation 4 requires that a relationship between the
volume fraction of the constituent phases and the
average composite modulus be known. Initially, a par-
ticulate composite can be essentially considered as
a material containing only two distinct phases as long
as the initial void fraction is negligible. However, at
some critical stress level, r

#3
, enough energy is input

into the material system so that particles begin to
debond. According to Equations 4 and 6, the larger
the particle, the lower the energy required for it to
debond. When debonding occurs, the composite
changes from a two-phase composite containing well-
bonded particles and a matrix to a three-phase com-
posite containing well-bonded particles, debonded
particles and a matrix. Modelling debonded particles
by a vacuole representation gives rise to orthotropic
composite properties because the stiffness in the direc-
tion of loading is lower than the stiffness perpendicu-
lar to the load.

The average elastic properties for a three-phase
composite [CM ] containing well-bonded particles with
properties [Ci], matrix with properties [C0] and
vacuoles with properties [C7] was derived [42] to be

[CM ]"[C0] ([I]#c*[!*] (c*[I!S*!!*]#[S*]#[A]

#c7[I!S7!!7] [S7#B]~1 [S*#A])~1

#c7[!7] (c7 (I!S7!!7]#[S7]#[B]

#c*[I!S*!!*] [S*#A]~1 [S7#B])~1) (8)

where brackets denote square matrices and [A]"
[C*!C0]~1 [C0], [B]"[C7!C0]~1 [C0], c3 is the
volume fraction of phase r, i identifies parameters
relating to inclusions, and v identifies parameters
relating to vacuoles.

The Eshelby tensor [S] is dependent on the matrix
Poisson’s ratio, m

0
, and the inclusion shape. [S] is

defined [44] as
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Vacuoles have been modelled as a spherical inclusion
with orthotropic properties. For a uniaxial bar in
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tension, a low modulus value, F
"
E
11

, in the loading or
pole direction, was used to represent the debonded
condition and a high or inclusion modulus value, E

22
and E

33
, in the equator direction was used together

with setting m
12

"m
21

"m
13

"m
31

"0 to enforce the
lateral constraint condition. The factor F

"
was intro-

duced to allow for the possibility that a particle could
be partially debonded. Because the M—T formulation
can be applied equally well to inclusions with ortho-
tropic properties as to inclusions with isotropic prop-
erties, this approach was implemented by modifying
the definition of the debonded particle’s material
matrix. The property matrix for the normal compo-
nents of this orthotropic material was
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where m"(1!m
23

m
32

)~1, F
"
is the partial debonding

factor, E
ii

the isotropic modulus of particle in the ii
direction, and m

ij
the Poisson’s ratio of particle in the ij

direction.
The solution given [44] for particle interaction was

integrated into the M—T formulation through a cor-
rection matrix, [!3]. This matrix was derived from the
analysis of probabilistic pairwise particle interaction
of two identical and randomly located elastic spheres
embedded in a comparison material. This was shown
[42] to be
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where [I] is the identity matrix, c3 the volume fraction
of phase r, ½"½
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The definitions for b, f
1

and f
2

may be found else-
where [44]. The term [!3] states that reinforcement
not only comes from the presence of inclusions in the
composite but that it also occurs due to the proximity
of the inclusions to one another. The strength of the
interaction is characterized by ½

.
.

2.4. Non-linear elastic matrix behaviour
The average composite modulus [CM ] (Equation 8) is
controlled by the nature of the constituent properties.
If [C*] and [C0] are isotropic but [C7] is orthotropic,
the average modulus will necessarily be orthotropic. If
the [C*] and [C7] are linear elastic but [C0] is non-
linear elastic, [CM ] will necessarily be non-linear elastic.

Non-linear elasticity has been introduced in the
current micromechanical formulation by modelling
the matrix as an isotropic strain-dependent material.
This dependency was quantified by the second-order
polynomial

E
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where E
0

is the tensile secant modulus of the matrix
and e

0
is the average uniaxial matrix strain. The

matrix Poisson’s ratio, m , was assumed to be constant

0
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over the strain range of interest. The E
0

and m
0

were
converted to strain-dependent bulk K

0
and shear G

0
secant moduli [46]. These were then used to calculate
the elements in the matrix secant modulus [C0] ac-
cording to standard relationships [47]. Because [C0]
is defined in terms of a secant modulus, [CM ] is also
a secant measure.

For a particulate composite containing an arbitrary
number of phases, the average matrix strain was esti-
mated using a Reuss model [48, 49]. The resulting
relationship between e

0
and the average composite

strain, e
#
, for a one-dimensional case was [50]
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where E
#
is the average composite secant modulus and

Me is defined as the composite strain magnification
factor. The fact that E

#
, E

0
and e

#
are functions of e

0
automatically means an iterative solution is required
to solve Equation 8.

2.5. Prediction of mechanical behaviour
In order to predict the mechanical behaviour of a par-
ticulate composite using Equations 2—13, five things
must be known before the critical strain, e

#3
, and the

corresponding average composite stress, r
#
, can be

calculated. They are:
1. the size distribution of the particles in the com-

posite;
2. the particle and matrix properties;
3. the critical stress where particle debonding first

begins;
4. the degradation in composite stiffness as a result

of particles becoming debonded; and
5. the adhesion energy between particle and matrix.
Particle-size distribution and constituent properties

can be measured using standard measurement tech-
niques [41]. The technique to evaluate modulus
degradation was discussed in Section 2.3. Estimation
of adhesion energy will be dealt with in Section 3.3.
Discussions on critical stress and further comments on
adhesion energy are given in Section 4.1.2.

When the above items have been quantified, the
prediction of composite mechanical behaviour
proceeds in two steps. Up to the critical stress, r

#3
,

before any debonding has occurred, the non-linear
stress—strain relationship for a one-dimensional case
maybe calculated according to
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#
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using the method of direct substitution [51]. Here, i is
the iteration index, rj

#
is the jth composite stress

(1(j(M, at j"M, rM
#
"r
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), Ei
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is the average

composite properties evaluated at ei
#
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#

is the
new estimate of e

#
.

After the critical stress has been reached, the solu-
tion continues with the debonding of the kth group of
particles out of a total of K groups starting from the
largest particle radius. Particle sizes in each group are
calculated according to Equation 7. This determines



TABLE I Test matrix for glass bead/polybutadiene composites

Crosshead rate Treatment Av. c*!
0

Av. diameter Designation
(mmmin~1) (%) (lm)

10 None 30 25 N3MS
30 100 N3ML
50 25 N5MS
50 100 N5ML

10 Silane 30 25 T3MS
30 100 T3ML
50 25 T5MS
50 100 T5ML

100 None 30 25 N3FS
30 100 N3FL
50 25 N5FS
50 100 N5FL

100 Silane 30 25 T3FS
30 100 T3FL
50 25 T5FS
50 100 T5FL

!c*
0

is the initial inclusion volume fraction.

the energy dissipated through new surface area cre-
ation (de

!3%!
in Equation 5) and the concentration of

inclusions that have debonded. Calculation of the net
change in average composite modulus (bracketed
quantity on the right-hand side of Equation 4) is car-
ried out using the modulus degradation routine from
Section 2.3. From this, the critical strain is deter-
mined. The corresponding stress is then calculated
using Equation 2 and the composite properties [CM ]
which lead to the critical strain. Matrix strain is
updated along with each critical strain calculated
(Equation 13). As the process of debonding groups of
inclusions carries on, the average mechanical behav-
iour of the composite is described by the pairs of
critical strain—composite stress points.

3. Experimental procedure
3.1. Materials
A model composite material was fabricated using hy-
droxyl-terminated polybutadiene (HTPB) and spheri-
cal glass beads. The HTPB (Arco Chemicals) had
a nominal molecular weight of 2800 gmol~1, a poly-
dispersity index of 1.8 and a hydroxyl equivalent
weight of 40.2 mg KOH/g. Four types of glass beads
were purchased from Potter’s Industries Inc. (La
Prairie, Qc, Canada) for the experiments. The first
type was as-received beads with an advertised average
diameter of 25 lm (Stock 2900). The second type was
as-received beads with an advertised average diameter
of 100 lm (Stock 2227). The third and fourth types
were Stock 2900 and Stock 2227 treated with a silane
coupling agent known as CP-03. This agent is opti-
mized for use with epoxy and urethane resin systems.

The test matrix given in Table I was designed to
examine the performance of the micromechanical
model given different particle-size distributions, ad-
hesion energies, inclusion volume fractions and load-
ing rates. Each composite designation is composed of
four letters. The first letter indicates the type of surface
treatment (N, untreated; T, treated). The second letter
indicates the initial inclusion volume fraction (3, 30%;
5, 50%). The third letter identifies the crosshead
displacement rate used in the tensile test (M,
10 mmmin~1; F, 100 mmmin~1) and the fourth
letter indicates the average bead size (S, 25 lm; L,
100 lm).

The model composite was fabricated in two steps.
A pre-mix was prepared for casting by mixing in
0.5% wt/wt AO2246 (Cyanamid) anti-oxidant agent
using a Design Integrated Technologies 10CV heli-
cone vertical mixer. Mixing time was 2 h at 60 °C. The
polymer was then left to stand under vacuum for 2 d at
60 °C to ensure that trace moisture had been elimi-
nated. On the day of casting, 0.01% wt/wt di-ter-
butyl-dilaurate (DBTDL) cure catalyst from Aldrich
Chemical was added to the pre-mix along with the
required quantity of glass beads and mixed for 30 min.
To achieve an optimal NCO/OH ratio of 1.1,
6.55% wt/wt tolylene diisocyanate (TDI, comprised of
97% 2,4 and 3% 2,6 isomers) from Kodak Ltd, was
added and the entire mixture was mixed again for
30 min. At the end of the mix cycle, the composite was
cast into 150 mm]150 mm]100 mm blocks for spec-
imen preparation. All mixing and casting operations
took place under vacuum. The blocks were left to cure
for 6 d at 60 °C under ambient pressure.

3.2. Test procedures
Uniaxial specimens were prepared by sawing the com-
posite blocks into 12.5 mm slabs and then die cutting
JANNAF Class C type specimens from the slabs. The
9.5 mm]12.5 mm cross-sectional area made this
specimen well-suited for mechanical characterization
of loaded materials [41, 52]. Prior to testing, the speci-
mens were pre-conditioned in a vacuum desiccator at
room temperature for at least 24 h.

Uniaxial testing was carried out on the composites
in an Instron 4206 machine equipped with either an
Optra Laser Extensometer (Optra Inc., Peabody, MA)
or a Farris Gas Dilatometer (Richard Farris, Leeds,
MA) according to CPIA procedures [52]. One series
of tests were carried out with the laser extensometer to
calculate the effective gauge length (EGL) of the model
composites. Details of this procedure were given
elsewhere [41]. Another series of tests were carried
out in the gas dilatometer to measure simultane-
ously the stress—strain behaviour as well as the dilata-
tion—strain behaviour. Details of how this instrument
operates is given elsewhere [50, 53]. The EGL was
needed for the dilatometer tests because composite
strain could only be calculated using crosshead dis-
placement. Three specimens were tested for each com-
bination shown in Table I. Because data scatter was
low, the test best representing the average behaviour
of the three specimens was selected for use in Sec-
tion 4. Tensile tests on pure polymer were conducted
according to ASTM D638 [54].

Initial inclusion volume fraction, c*
0
, was measured

using density measurements of pure polymer blocks
and composite blocks. Density measurements were
carried out using the immersion method as specified in
ASTM D792-86 [55]. The initial volume fraction was
5023



Figure 1 Geometry of test specimen used to measure adhesion
energy.

calculated using a rearrangement form of the rule of
mixtures equation for composite density [45].

3.3. Estimation of adhesion energy
Adhesive strength has been measured using a number
of techniques [56, 57]. As noted by Mower and Argon
[58], these techniques evaluated the adhesive strength
qualitatively through assumed adhesive character-
istics or fractographic evidence. Mower and Argon
[58] evaluated adhesive strength between particle and
matrix in terms of a hydrostatic stress using a uniaxial
test. Their test specimen consisted of a particle embed-
ded in the centre of a matrix bar that was specially
shaped to induce a triaxial state of stress at that point.

The approach used here was similar in concept to
that used by Mower and Argon. However, instead of
measuring adhesive strength, adhesion energy was de-
sired. The basis of this measurement came from a sim-
plified form of Equation 4 [42]

G
#

»
0

*A

*c
i

" !

1

2

*E
#

*c
i

e2
#3

(15)

Referring to Figs 1 and 2, Equation 15 states that if
we load the specimen shown in Fig. 1 in tension, at
some point e

#3
, there would be enough work input into

the specimen to cause the glass bead to debond (point
A in Fig. 2). When this occurs, there will be a sudden
loss in reinforcement and therefore overall stiffness, so
the load will fall to point B. If we unload from point
B back to zero load (point O), the area OABO repres-
ents the energy dissipated to create new surface area.
This energy is quantified by the right-hand term of
Equation 15. Because the geometry of the specimen
and inclusion are known and the amount of surface
area debonded is observed during the test, adhesion
energy, G

#
, can be calculated.

The shape of the specimen shown in Fig. 1 was
designed using a finite element model to concentrate
the stress field around the pole of the glass bead and to
minimize the peel stresses at the edges of specimen
grips. The specimen volume was selected according to
the size of beads available so that the *E

#
/*c

i
would

be measurable in terms of a drop in load at a reason-
able crosshead displacement.
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Figure 2 Schematic diagram of energy loss due to particle debon-
ding.

Six specimens were fabricated using ordinary
soda—lime beads (i.e. glass marbles) and HTPB poly-
mer with an NCO/OH ratio of 1.0. The NCO/OH
ratio was lowered slightly to match better the matrix
modulus measured using specimens from the cast
blocks in Section 3.1. The polymer modulus was veri-
fied using specimens that were fabricated without beads.

To fabricate the specimens, the beads and grip sur-
faces were degreased using dichloromethane. The
lower grip was then set upright and the clamshell
Teflon moulds, conforming to the geometry shown in
Fig. 1, clamped on. The degassed polymer was poured
into the mould while it was still at 60 °C. Afterwards,
the top grip was pressed on and the excess polymer
allowed to exit through the vents. This created essen-
tially void-free specimens. Any air bubbles that did
become trapped were usually small and located in the
low stress areas in the specimen. These had negligible
effect on the overall results.

The specimens were tested at two loading rates.
Three specimens with beads and one specimen with-
out beads were tested at a crosshead rate of
10 mmmin~1. The remaining specimens were tested
at a rate of 100 mmmin~1. The purpose of these
experiments was to obtain an idea of the relative
change in adhesion energy for this type of composite
at the two test speeds. No attempts were made to
characterize the actual adhesion energy that existed
between as-received glass beads or CP03-treated
beads and HTPB. Therefore, the values estimated with
these single-bead tests are not meant to be a represen-
tative measure of the adhesion energy present in the
composites fabricated in Section 3.1 because the sur-
face treatments are obviously different.

4. Analysis and discussion
The micromechanical model described in Section 2
contains adjustable parameters that must be defined
before the model can be run. For example, the user
must specify the appropriate value for the partial
debonding factor, F

"
(Equation 10). Questions of how

one selects these values and how sensitive the predic-
tions are to small changes in these values naturally
arise.



Figure 3 Experimental mechanical behaviour of composite T3FS.
(j) Engineering stress, (d) true stress, (r) dilatation.

The first question will be dealt with in Section 4.1.
Here the experimental data will be used to deduce the
values for the adjustable parameters. This analysis will
also allow critical examination of the assumptions and
theory presented in Section 2. The second question
will then be examined in Section 4.2 in light of the
parameters obtained in Section 4.1. In this section,
because uniaxial tests were carried out, the notation
used will refer to scalar values of tensile secant
modulus, E, stress, r, and strain, e. Also, superscript
‘‘e’’ will be used to denote experimental data while
superscript ‘‘c’’ will be used to denote calculated re-
sults. Comparisons will be made at discrete points so
the differential operator has been replaced by a * op-
erator to reflect this.

4.1. Determination of model parameters
4.1.1. Procedure
The known quantities in the model are the experi-
mentally measured composite engineering stress, r%/'

#
,

composite strain, e%
#
, dilatation, *»%/», initial inclu-

sion fraction, c*
0
, particle distribution (rN and n in Equa-

tion 7), isotropic matrix properties, E
0

and m
0
, and

isotropic particle properties, E
i

and m
i
. The experi-

mental true stress, rT
#
, and secant modulus, E%

#
, can be

calculated through the relationships [50]

rT
#

" r%/'
#

1#e%
#

1#*»%/»
(16)

E%
#
" rT

#
(e%

#
)~1 (17)

An example of the experimental data is shown in
Fig. 3 for composite T3FS. As the composite is
strained, no significant change in volume occurs until
e
#
+0.12. The stress corresponding to this strain was

defined in Sections 2.3 and 2.5 as the critical stress,
r
#3

. As strain increased, the cross-sectional area re-
duced according to the instantaneous composite Pois-
son’s ratio. This resulted in the growing difference seen
between composite true stress and engineering stress.

The unknown parameters in the model are the in-
teraction factor multiplier, ½

.
(Equation 11) and the

partial debonding factor, F
"
(Equation 10). Quantities

such as the vacuole volume fraction, c
7

(Equation 8)
and the adhesion energy, G

#
(Equation 4), even

though not measured directly, can be deduced using
Figure 4 Algorithm for back calculation of ½
.
.

the experimental data and the micromechanical
model. ½

.
can be determined using e%

#
and E%

#
data up

to r
#3

. After debonding occurs, e%
#
, E%

#
and *»%/» are

needed to determine F
"

and to deduce c
7
.

The algorithm used to determine ½
.

is shown in
Fig. 4. The routine starts off by assuming ½

.
"1. It

then proceeds by estimating the ith iteration of matrix
strain, ei

0
, using the jth pair of E%

#
—e%

#
points in the data

set. This value is used in the M—T routine (Equa-
tion 8) to calculate the E#

#
(Equation 3) that corres-

ponds to ei
0
. The same is done for E

0
(Equation 12).

A new value of ei`1
0

is then calculated using E#
#
, E

0
and

e%
#

(Equation 13). If the value of ei`1
0

+ei
0
, then the

solution for the matrix strain has converged and the
jth pair of calculated points, E#

#
—e%

#
is stored. This

continues for the M data points leading up to r
#3

. At
j"M, the relative error between the experimental
modulus, E%

#
, and calculated modulus, E#

#
, at each e%

#
is

calculated. If the average relative error, ½%33
.

, between
experimental and calculated moduli is greater than the
tolerance, ½

.
is adjusted and the entire procedure

repeated. When ½%33
.
(tol then the appropriate inter-

action multiplier for the composite has been found.
The algorithm used to determine F

"
is similar to

that used for finding ½
.

except this time, experimental
values for modulus and dilatation are used (Fig. 5).
The ½

.
previously calculated is assumed to remain

constant for the entire loading history. The routine
starts off by assuming F

"
"0, i.e. the inclusion de-

bonds completely with no residual stiffness in the
loading direction. A quantity of vacuoles, cj

7
, are also

assumed created as a result of debonding at the jth
pair of E%

#
—e%

#
and *»%/»—e%

#
data points. As before, the

solution for ei
0
is allowed to converge. If E#

#
OE%

#
then

cj
7
is increased until this condition is met. The corres-

ponding dilatation *»#/» is calculated from

*»#

»

" A1!2
CM

2211
CM

2222
#CM

2233
B e%

#
(18)

The calculated pairs of *»#/»—e%
#

are stored for
j"M#1 to N where N is the total number of data
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Figure 5 Algorithm for back calculation F
"
.

points. At j"N, the average absolute error, F%33
"

,
between *»#/» and *»%/» is calculated. If the error is
greater than the tolerance, then F

"
is adjusted and the

whole procedure repeated until the tolerance value is
reached. When F%33

"
(tol, the appropriate debonding

factor for the composite has been found. Because
a constant F

"
is calculated, it represents the average

degree of debonding for particles of all sizes in the
composite.

An apparent adhesion energy, G!11
#

, can be cal-
culated from the experimental E%

#
—e%

#
data and the

parameterized particle distribution (Equation 7) by
assuming that at the end of data, the total surface area
debonded according to Equation 6 and Section 2.5
equals the total surface area debonded experimentally.
In other words

K
+
k/1

*e#
!3%!

"

N
+
j/1

*e%
.0$

(19)

Rearrangement of Equation 19 in terms of Equa-
tion 15 gives,
0

5026
G!11
#

" A
1

2

N
+
j/1

*E%
#

*c
*

e%2
# BA

1

»
0

K
+
k/1

*A

*c
*
B
~1

(20)

The summation of energy for *e%
.0$

is straight for-
ward because it is simply the sum of all the energies
dissipated at the N experimental data points. The
summation for *e#

!3%!
is not as obvious because the

total energy depends on the value selected for the total
number of points, K, used to sub-divide the particle
distribution. If K is large, the resulting sum of *A/*c

*
will be large because there will be many 1/r terms to
add up. The opposite is true when K is small. The
appropriate K was selected by matching the average
*c

*
from the particle distribution with the average *c

*
deduced from the experimental data.

4.1.2. Results
The numerical results of the analyses described in
Section 4.1.1 are shown in the lower part of Tables II
and III. The upper part of the tables shows the mea-
sured model parameters. From the note included in
the tables, it can be seen that the matrix modulus was
slightly non-linear out to about 100%e for the two
crosshead rates used. The tolerances specified for ½%33

.
ranged from 0.5%—5% while the tolerances for F%33

"
ranged from 0.001—0.014. Different values were
needed because the degree of fit between the experi-
mental and calculated results were not always the
same.

Figs 6—9 summarize the tensile and dilatational be-
haviour observed for the composites identified in the
test matrix (Table I). Generally, the composites con-
taining the CP-03 treated beads had higher maximum
strength and lower dilatation than the equivalent
composite which contained as-received beads. The
treated beads also delayed the onset of dilatation. For
the c*

0
"0.3 composites, the initial modulus was unaf-

fected by surface treatments or bead size. However, for
the c*

0
"0.5 composites, slight increases in initial

moduli were seen for those composites containing
as-received beads.

Figs 10—13 show the ability of the micromechanical
model to reproduce the experimental data for com-
posites T3FS—N3FS, T5FS—N5FS, T3ML—N3ML
TABLE II Model parameters for glass bead/HTPB tested at 100 mmmin~1

T3FS T3FL T5FS T5FL N3FS N3FL N5FS N5FL

rN (lm) 15.5 65 15.5 65 15.5 65 15.5 65
n 0.167 0.0374 0.167 0.0374 0.167 0.0374 0.167 0.0374
c*
0

0.307 0.311 0.511 0.517 0.302 0.302 0.503 0.504
c7
0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
m
*

0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16
m
0

0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34
G

*
(GPa) 30 30 30 30 30 30 30 30

E
0
(MPa) ! ! ! ! ! ! ! !

r
#3

(MPa) 0.5 0.5 0.9 0.95 0.35 0.30 0.65 0.8
½

.
1.5 1.69 0.98 1.18 1.67 1.58 1.14 1.31

F
"
(]10~4) 2.6 2.1 1.0 0.8 0.8 0.34 1.1 0.42

G!11
#

(Jm~2) 2.330 5.720 3.982 10.92 2.241 3.832 1.784 5.189

!E "1.522 255!0.460 286e#0.270 235e2 (MPa).



TABLE III Model parameters for glass bead/HTPB tested at 10 mmmin~1

T3MS T3ML T5MS T5ML N3MS N3ML N5MS N5ML

rN (lm) 15.5 65 15.5 65 15.5 65 15.5 65
n 0.167 0.0374 0.167 0.0374 0.167 0.0374 0.167 0.0374
c*
0

0.307 0.311 0.511 0.517 0.302 0.302 0.503 0.504
c7
0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
m
*

0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16
m
0

0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34
G

*
(GPa) 30 30 30 30 30 30 30 30

E
0
(MPa) ! ! ! ! ! ! ! !

r
#3

(MPa) 0.45 0.50 0.65 0.75 0.45 0.30 0.40 0.45
½

.
1.17 1.26 0.83 1.13 1.22 0.92 1.06 1.32

F
"
(]10~4) 2.1 1.8 1.0 1.1 0.4 0.24 1.0 0.3

G!11
#

(Jm~2) 1.204 3.651 2.229 6.344 1.428 2.218 1.134 2.908

!E
0
"1.554 865!0.497 499e#0.321 452e2 (MPa).
Figure 6 Experimental true stress results for (d, m, j, .) treated
and (s, n, h, £) untreated glass bead/HTPB composites tested at
10 mmmin~1. (s, d, n, m) 32 lm, (h, j, £, .) 120 lm; (s, h, d,
j) 30%, (n, £, m, .) 50%.

Figure 7 Experimental dilatation results for treated and untreated
glass bead/HTPB composites tested at 10 mmmin~1. For key, see
Fig. 6.

and T5MS—N5MS when the parameters from Tables
II and III are used. For the sake of brevity, only the
stress—dilatation—strain diagrams of these composites
will be shown. For most composites including the
ones not shown here, the calculated composite stress,
r#
#
, matches the experimental stress r%

#
well up to the

end of the data. It can be seen that the r#
#
results have

more of a ‘‘knee’’ when compared to the transition
Figure 8 Experimental true stress results for treated and untreated
glass bead/HTPB composites tested at 100 mmmin~1. For key, see
Fig. 6.

Figure 9 Experimental dilatation results for treated and untreated
glass bead/HTPB composites tested at 100 mmmin~1. For key, see
Fig. 6.

seen in the experimental data. The good fit between
calculated results and experimental data indicate that
the assumption of a constant ½

.
was a reasonable one

to make.
The deviations in calculated stress were closely re-

lated to the deviations of the calculated vacuole frac-
tion, c#

7
, from the experimental vacuole fraction, c%

7
(Fig. 14). Because composite stresses are calculated
from a current composite modulus that itself is depen-
dent on the current vacuole fraction, it would be
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Figure 10 True stress behaviour calculations for selected (j, m,
—— —) treated and (h, n, ——) untreated glass bead/HTPB com-
posites tested at 10 mmmin~1. (j, h, m, n) Experimental results,
(——, — — —) calculated results. (j, h) 30%, 120 lm, (m, n) 50%,
32 lm.

Figure 11 Dilatation behaviour calculations for selected treated
and untreated glass bead/HTPB composites tested at 10 mmmin~1.
For key, see Fig. 10.

Figure 12 True stress behaviour calculations for selected (d, m,
—— —) treated and (s, n, ——) untreated glass bead/HTPB com-
posites tested at 100 mmmin~1. (s, d, n, m) Experimental results,
(——, —— —) calculated results. (s, d) 30%, 32 lm, (n, m) 50%,
32 lm.

expected that the larger the deviation between cal-
culated and experimental c

7
, the larger the deviation

between calculated and experimental r
#
. As foreseen,

the r#
#
to r%

#
difference is opposite in sign and propor-

tional to the c#
7
to c%

7
difference. The ‘‘knee’’ in the r#

#
—e#

#

5028
Figure 13 Dilatation behaviour calculations for selected treated
and untreated glass bead/HTPB composites tested at
100 mmmin~1. For key, see Fig. 12.

Figure 14 (d, —) True stress and (m, —— —) vacuole concentration
calculations for composite N5MS: (d, m) experimental, (——, — — —)
calculated.

curve is related to the apparent lack of strain energy
available to debond the first set of particles. For
example, in N5MS, debonding starts at e%

#
"0.04 in

the experimental data as opposed to e#
#
"0.06 in the

calculated results. The experimental results suggest
that it may require less internal strain energy to initi-
ate debonding than assumed in the micromechanical
model. It should also be mentioned here that the
requirement to specify r

#3
could be removed if a suit-

able initiation criterion could be found.
The calculated dilatational behaviour, *»#/»,

tended to be on the stiff side when compared to the
experimental dilatation, *»%/». For cases such as
T3FS and T5MS (Figs 11 and 13), the *»#/» results
compared well with the *»%/» results. For other cases
such as T5FS, N5FS and N5MS, *»#/» was over
estimated at the lower e%

#
and under estimated at the

higher e%
#
. For N3ML, the *»#/» was generally over

estimated for the entire strain range, while for N3FS
it was under estimated.

The *»#/» results are controlled both by c
7
and F

"
.

By assuming a value for F
"

before determining the c
7

that reproduces the E%
#
, the procedure described in

Section 4.1.1 is only capable of finding an average
debonding factor. In cases such as T3FS and T5MS,
the assumption of a constant debonding factor ap-
pears to work well. In other cases such as T5FS, N5FS



or N5MS, it appears that the calculation of F
"
needs to

be refined in order to capture the debonding behav-
iour of the particles. Unfortunately, with only com-
posite stress, strain and dilatation data on hand, there
is not enough experimental information available to
resolve this issue.

From Tables II and III, the result ½
.
O1 for all

composites tested indicates that the composite
modulus in Equation 8 requires some adjustment to
reproduce the actual initial modulus. While it would
be tempting to say that the ½

.
values are purely

attributable to physical particle interaction [59], the
fact that the ½

.
for composites containing c*

0
"0.5 is

lower than the ½
.

for composites containing c*
0
"0.3,

except for the case of N3ML and N5ML, discounts
this interpretation. From these results, ½

.
can be

considered a parameter that groups together factors
such as particle interaction, size and surface treatment
that have a subtle influence on composite modulus.

Again from the tables, it can be seen that the values
of F

"
O0. This implies that the beads do not fully

debond but that there is a residual bond that remains
between bead and matrix. Physically, this would imply
that hO0° (Equation 6) as assumed by others
[20, 60—62] but it would take on some value h'0°.
This bond is significant because it varies between
1 and 12 times the stiffness of the matrix. The higher F

"
for composites containing 31 lm beads suggests
smaller beads debond to a lesser extent than larger
beads.

One of the major assumptions made in the micro-
mechanical model dealt with how particles debond as
the composite is loaded. Based on the information
found in the literature [22—25], it is generally accepted
that large particles debond before smaller ones. This
model takes that fact one step further by assuming
that the particles in the composite debond in a pro-
gressive manner starting with the largest particles and
ending with the smallest ones. The possibility that
some large particles and some small particles debond
at the same time is not considered. The experimental
data and calculated results for rate of particle debon-
ding (denoted *c

7
) versus the cumulative c

7
for T5MS

(Fig. 15) and N5MS (Fig. 16), show that the assump-
tion was a reasonable one. This assumption worked
well for 14 out of the 16 composites tested. In the cases
of T5FL and T5ML, large differences were observed
between the deduced *c%

7
and the calculated *c#

7
(see

Fig. 17 for T5ML results). This explained why there
was poor correspondence between the experimental
and calculated r

#
—e

#
results (Fig. 18). Without other

information, it is not possible to determine why the
beads in these composites tended to debond at
a slower rate than expected.

The apparent adhesion energies listed in Tables II
and III indicate that the energy required to debond
a particle is rate sensitive and must be taken into
account. These values were calculated assuming the
debonding angle h"0°. On average, when equivalent
composites are compared, the G!11

#
at 100 mmmin~1

was about 1.7 times the G!11
#

at 10 mmmin~1.
The results from the adhesion tests (Section 3.3)

shown in Table IV also support this observation.
Figure 15 Calculated incremental vacuole concentration behaviour
for composite T5MS. (m) Experimental, (— — —) calculated values.

Figure 16 Calculated incremental vacuole fraction behaviour for
composite N5MS. (m) Experimental, (— — —) calculated values.

Figure 17 Calculated incremental vacuole concentration behaviour
for composite T5ML. (m) Experimental, (— — —) calculated values.

The average measured adhesion energy G%
#

at
10 mmmin~1 was 374 Jm~2. At 100 mmmin~1, the
average G%

#
was 758 Jm~2. Thus, the relative G%

#
mag-

nitude based on the 10 mmmin~1 result was 2.03.
Fig. 19 compares the stress—strain data measured for
Specimens 3 (10 mmmin~1) and 6(100 mmmin~1). It
was interesting to note that the polymer failed around
the bead at h+30°. This was predicted by the finite
element results and has been predicted by others
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Figure 18 (d, ——) True stress and (m, — — —) dilatation behaviour
calculations for composite T5ML: (d, m) experimental, (——, — — —)
calculated values.

TABLE IV Single bead debond results

Specimen Rate E61
#

! E$/
#

" e
#3

G!11
#

(mmmin~1) (MPa) (MPa) (Jm~2)

1 10 1.47 1.28 0.328 426
2 10 1.68 1.44 0.256 323
3 10 1.71 1.51 0.296 369
4 100 2.08 1.66 0.277 680
5# 100 N/A N/A N/A N/A
6 100 1.85 1.52 0.350 835

!E61
#

is the average composite modulus when loading.
"E$/

#
is the average modulus when unloading.

#Results for Specimen 5 are not available because it failed prema-
turely.

Figure 19 Adhesive energy dissipation for debond specimens tested
at (m) 10 and (j) 100 mmmin~1.

[63, 64]. If the particles in the model composites de-
bonded in a similar manner then this would mean the
results in Tables II and III are under estimated by
a factor of 2.

It is difficult to pin-point what the actual G
#

is for
the different beads used. In general, the treated beads
had larger G!11

#
than the untreated beads. Exceptions

to this were the composites containing 30% volume
fraction of the 31 lm beads. Comparisons of *»%/»
versus e%

#
show that the as-received beads debonded

earlier than the treated beads in all cases (Figs 9 and
11). This result demonstrates clearly that the bonding
for treated beads was better because more strain en-
5030
ergy was required in the composite to induce debon-
ding. The tables, however, also suggest that the
130 lm beads have a larger G

#
than that 31 lm beads

and that G
#
increases with increases in c*

0
. There are no

obvious reasons why this should be so. The fact that
the model can reproduce the r%

#
!e%

#
and *»%/»—e%

#
behaviour using G!11

#
suggests there was validity in

assuming equal amounts of surface area have been
debonded in the actual and model particle distribu-
tions. At this point, the values for G

#
can only be called

‘‘apparent’’ because the factors that influence this
parameter have yet to be precisely determined. This
remains a problematic area for this model. Quantifica-
tion of energy dissipation by mechanisms other than
surface creation in composites has been studied
[65—67] though, and may lead the way for further work.

4.2. Sensitivity and predictive capability
of micro-mechanical model

The back-calculated parameters found in the previous
section reduced the error in modulus and dilatation to
a minimum. The sensitivity of the micromechanical
model to changes in the adjustable parameters will be
examined from two perspectives. The first is to exam-
ine the tendencies the model exhibits with changes in
the parameters. This will identify the dominant para-
meter. The second is to use the model like a user
would to predict the mechanical behaviour of a com-
posite under development. This will demonstrate the
predictive capability of the model given the presence
of the adjustable parameters.

Four parameters, namely r
#3
, ½

.
, F

"
and G

#
were

needed in the model. Out of these four, only ½
.

and F
"

can be considered truly adjustable. r
#3

was specified
by examining the measured stress—strain and dilata-
tion—strain results (Section 4.1.1). G

#
is a measurable

quantity too, although it is not clear how it should be
measured. As a consequence, the sensitivity analyses
presented in the following sections will use r

#3
and

G!11
#

as shown in Tables II and III. ½
.

and F
"

will be
varied. Analyses are limited to the 10 mmmin~1 para-
meters because the 100 mmmin~1 parameters have
the same trends based on composite type.

4.2.1. Trends with Ym and Fb

To make the analysis manageable, the sensitivity of
a single point on the r%

#
—e%

#
and *»%/»—e%

#
curves were

selected for comparison with the calculated values.
These points were called target values and were gener-
ally chosen at the mid-way point in the phase where
particles were debonding because they would measure
the average change in behaviour. Table V lists this
information along with the corresponding target ½

.
and F

"
(see also Figs 10 and 11). The term ‘‘fractional

value’’ will be used often. This is defined by

fraction "

actual

target
!1 (21)

The fractional stress and dilatation values were cal-
culated over a fractional ½

.
and F

"
of $0.25 in steps



Figure 20 Fractional stress contours for composite T5MS based on
variation of interaction factor, ½

.
and debonding factor, F

"
.

TABLE V Target values for sensitivity analyses

Composite e%
#

r%
#

*»%/» ½
.

F
"

(MPa) (]10~4)

T3ML 0.400 1.19 0.023 1.26 1.8
N3ML 0.301 0.626 0.050 0.92 0.24
T5MS 0.249 1.46 0.042 0.83 1.0
N5MS 0.150 0.933 0.028 1.06 1.0

of 0.05. This produced 100 different combinations to
examine for each composite. For the sake of brevity,
only the graphical results of T5MS and N5MS will be
shown. The composites T3ML and N3ML exhibited
similar behaviour.

A comparison of the fractional stress contours for
T5MS (Fig. 20) and N5MS (Fig. 22) shows that the
stress sensitivities are quite different. In T5MS, there
are high rates of change centred at fractional
½

.
"!0.20 and F

"
"0.15. In N5MS, the gradient is

more uniform. A similar pattern is observed in the
dilatational sensitivities (Figs 21 and 23). In all the
figures, high fractional stresses or low fractional
dilatations are seen when fractional F

"
is high and ½

.
is low. Because a high fractional F

"
increases stiffness,

one would expect high stresses there. However, a high
fractional ½

.
, also increases stiffness but low stresses

tend to occur in those locations. This shows that the
model is influenced more by the value of F

"
than ½

.
.

The figures reveal that it is better to under estimate F
"

and over estimate ½
.

if reasonably accurate values of
stress (fractional r

#
(10%) are desired. This would be

to the detriment of the dilatation results though.
Table VI summarizes the locations of the minimum
and maximum fractional stresses and dilatations for
all composites examined in this section.

For interest, a similar analysis was carried out for
fractional values of r

#3
and G!11

#
while ½

.
and F

"
were

fixed according to Tables II and III. Figs 24 and 25
show that stress and dilatation are totally dominated
by G!11

#
. For the range studied (!0.15(

frac.G!11
#

(#0.15), the stresses are within 10% of the
target values. Dilatation is only slightly affected by
changes in G!11

#
in comparison to the effects of F

"
. The

analysis was limited to $0.15 because greater values
Figure 21 Fractional dilatation contours for composite T5MS
based on variation of interaction factor, ½

.
and debonding factor,

F
"
.

Figure 22 Fractional stress contours for composite N5MS based
on variation of interaction factor, ½

.
and debonding factor, F

"
.

Figure 23 Fractional dilatation contours for composite N5MS
based on variation of interaction factor, ½

.
and debonding factor,

F
"
.

caused large increases in fractional stress. The results’
insensitivity to variations in r

#3
highlight again the

importance of having a representative value for G
#
.

4.2.2. Predictive capability of model
To use the micromechanical model for predicting
mechanical behaviour of an unknown composite, a set
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TABLE VI Minimum and maximum fractional, r
#

and *»/»

Composite Fractional

r
#

F
"

½
.

*»/» F
"

½
.

T3ML Max 0.02 0.25 !0.25 0.50 !0.25 0.20
Min !0.08 !0.25 0.25 !0.30 0.25 !0.25

N3ML Max 0.06 0.25 !0.25 0.65 !0.25 0.20
Min !0.10 !0.25 0.25 0.05 0.25 !0.25

T5MS Max 0.40 0.15 !0.20 0.40 !0.25 0.25
Min !0.10 !0.25 0.25 !0.50 0.15 !0.20

N5MS Max 0.08 0.25 !0.25 0.30 !0.25 0.25
Min !0.08 !0.25 0.25 !0.50 0.25 !0.25
Figure 24 Fractional stress contours for composite T5MS based on
variation of critical stress, r

#3
, and apparent adhesion energy, G!11

#
.

Figure 25 Fractional dilatation contours for composite T5MS
based on variation of critical stress, r

#3
, and apparent adhesion

energy, G!11
#

.

of ‘‘best guess’’ ½
.

and F
"

values are required. It is
evident from Table III that the F

"
for treated particles

is not in the same range as the F
"

for as-received
particles. As it was determined in the previous section
that it was better to under estimate F

"
, a ‘‘best guess’’

value of F
"
"1.0]10~4 was selected for the treated

particles and a value of 0.25]10~4 was selected for the
as-received ones. A reasonable ‘‘best guess’’ value of
½

.
"1.0 was selected because the model is less sensitive

to variations in ½
.

and it was a nice round number.
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TABLE VII Fractional r
#
and *»/» for best guess ½

.
and F

"

Composite Best guess Fractional

½
.

F
"

½
.

F
"

r
#

*»/»

T3ML 1.0 1.00]10~4 !0.21 !0.44 +!0.08 +#0.50
N3ML 1.0 0.25]10~4 #0.09 #0.04 +!0.02 +#0.30
T5MS 1.0 1.00]10~4 #0.20 #0.00 +!0.05 +#0.10
N5MS 1.0 0.25]10~4 !0.06 !3.00 !0.22 #0.74

Figure 26 Predicted mechanical behaviour of composite T3FS
based on best-guess parameters derived from 10 mmmin~1 results.
(d) Experimental stress, (m) experimental dilatation, (——) cal-
culated stress, (— — —) calculated dilatation.

The results of using these ‘‘best guess’’ values are
shown in Table VII. For T3ML, N3ML and T5MS,
the fractional stresses are less than 0.1 as expected.
Composite N5MS fell outside this range because, un-
like the other untreated composites, its back-cal-
culated F

"
was closer to 1.0]10~4. The N5MS values

were calculated by hand because they were well be-
yond the limits of Figs 22 and 23. The fractional
dilatation were high, as expected.

As a final evaluation of these ‘‘best guess’’ values,
they were used to predict the behaviour of composites
T3FS and N3FS. From Fig. 26, it can be seen that r#

#
for T3FS compares well with r%

#
. It is slightly lower

than the r#
#

calculated with back-calculated values
(Fig. 12). The *»#/» is over estimated in relation to
*»%/» and the *»#/» calculated with optimal values
(Fig. 13). For N3FS, the trends are similar except the
difference between r#

#
and r%

#
is more noticeable

(Figs 27 and 12). This shows that it is possible to



Figure 27 Predicted mechanical behaviour for composite N3FS
based on best-guess parameters derived from 10 mmmin~1 results.
For key, see Fig. 26.

predict the mechanical behaviour of particulate com-
posites if suitable values for r

#3
and G!11

#
are available.

5. Conclusion
A micromechanical model for analysis of particulate
mechanical behaviour has been presented. The follow-
ing assumptions were used during the model develop-
ment.

1. Non-linear effects are due to matrix and particle
debonding.

2. Only well-bonded particles, debonded particles
and matrix are present in the composite.

3. Well-bonded particles are characterized by iso-
tropic properties while debonded particles are approx-
imated with orthotropic properties.

4. The matrix is non-linear elastic.
5. The representative volume element is much lar-

ger than the largest particle.
6. The interaction multiplier and debonding factor

are constant throughout the loading history.
7. Particles debond progressively from largest sizes

to smallest sizes throughout the strain history.
The study was broken into two sections. The first

section used the experimental data from a range of
glass bead/HTPB composites to back-calculate model
parameters. Reasonable values for the parameters
were found. This showed that the micromechanical
model gave a good representation of the processes
believed to control mechanical behaviour. The devi-
ations between calculated and experimental stress
were small when the back-calculated parameters were
used. Larger deviations for dilatation existed. These
deviations were traced back to differences between the
calculated and deduced vacuole volume fractions.

A comparison between the back-calculated interac-
tion multipliers for the different composites showed
that composite modulus is not only a function of
volume fraction and particle interaction but it may be
influenced by particle size and surface treatment as
well. The non-zero debonding factors found in this
study suggested that particles cannot be assumed to
debond fully. Assumption 7 was confirmed indirectly
by using the incremental vacuole fraction as an indi-
cator of the particle sizes debonded at any given mo-
ment.
The second section examined the sensitivity of the
model results to small changes in the interaction
multiplier and debonding factor. The debonding fac-
tor was found to have a dominating effect on the
calculated results. Changes in composite stress were
less sensitive to changes in this factor than composite
dilatation. The results showed it was better to under
estimate the debonding factor and to over estimate the
interaction multiplier when modelling an unknown
composite. An additional analysis showed that the
apparent adhesion energy also dominated the model
results. The model’s dependency on representative ad-
hesion characteristics remains a problematic area due
to the difficulty in measuring such values.

Based on the sensitivity results, ‘‘best guess’’ interac-
tion and debonding parameters were selected to exam-
ine the predictive capability of the model. The critical
stress and adhesion energy were assumed known. In
most cases, the predicted composite stresses were
within 10% of the experimental data. Dilatation was
usually over-predicted. As an additional test, the be-
haviour for two composites tested at 100 mmmin~1

were predicted using the ‘‘best guess’’ 10 mmmin~1

interaction multiplier and debonding factor. The re-
sults showed that the model was capable of predicting
the mechanical behaviour as long as suitable values
for critical stress and adhesion energy were available.
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